
Page 10	 FoxRockX� January 2009

Listing 1. TRANSFORM() lets you convert numbers to charac-
ter strings without providing the width and number of decimals.
? TRANSFORM(123.45) && displays 123.45
? TRANSFORM(123) && displays 12
? TRANSFORM($123.45) && displays $123.45

Converting dates and datetimes
The challenge for dates and datetimes has always
been that the results change based on how things
are set up. The DTOC() and TTOC() functions re-
spect the current SET DATE and SET CENTURY
settings.

When you want a result that’s independent of
SET DATE and SET CENTURY, you have two al-
ternatives for dates, both of them going back a long,
long way. DTOC() accepts an optional second pa-
rameter (listed as 1 in Help, but any numeric value
will do) that indicates that the result should be in
YYYYMMDD format. The DTOS() function, which
stands for Date TO System, does the same thing, as
Listing 2 demonstrates.

Listing 2. DTOC() depends on SET DATE, unless you pass the
optional second parameter. DTOS() also provides a result that’s
independent of the SET DATE setting.
LOCAL dDate

dDate = DATE(2008,11,20)

SET DATE AMERICAN
? DTOC(m.dDate) && displays 11/20/2008
? DTOC(m.dDate, 1) && displays 20081120
? DTOS(m.dDate) && displays 20081120

SET DATE BRITISH
? DTOC(m.dDate) && displays 20/11/2008
? DTOC(m.dDate, 1) && displays 20081120
? DTOS(m.dDate) && displays 20081120

SET DATE JAPAN
? DTOC(m.dDate) && displays 2008/11/20
? DTOC(m.dDate, 1) && displays 20081120
? DTOS(m.dDate) && displays 20081120

For datetimes, the same principles ap-
ply. TTOC() depends on SET DATE and SET
CENTURY, unless you pass the optional second
parameter. However, there are some additional
variations. If you pass 2 as the second parameter,
you get only the time portion of the value. In VFP
9, pass 3 for the second parameter, and get the da-
tetime formatted in the XML standard way. Listing
3 demonstrates.

Changing data from one type to another is a com-
mon requirement. In older versions of VFP, you
had to know a veritable cornucopia of functions to
handle the various possibilities. A few recent addi-
tions make type conversion easier.

Data needs to be converted between types for
all kinds of reasons, including formatting it for out-
put, moving it from one database to another, and
combining it with other data, for example, for use
in an index.

Changing to character
Perhaps the most common conversion is from oth-
er types to character. Sometimes, data needs to be
character for use in text output (whether it’s some
kind of report or an export file); at other times, it’s
in order to create a compound index.

In earlier versions, converting from other types
to character involved a number of different func-
tions including STR(), DTOC(), TTOC(), PADL()
and PADR(). The right choice depended on the
original data type and the desired result format.
Today, most conversions can be done with either
TRANSFORM() or CAST().

Converting numbers
When I started with FoxBase+, it wasn’t hard to de-
cide how to convert a number to a string; you used
STR(). That was the only choice.

STR() accepts up to three parameters: the num-
ber to convert, the length, and the number of deci-
mals to show. To be sure not to lose precision, you
need to include the second and third parameters and
make sure they’re large enough. When converting
a numeric field, that’s not hard, just pass the field
width and decimals. For non-field values, figuring
out the necessary size was always difficult.

Numeric conversion got much easier in VFP 6
when the TRANSFORM() function was enhanced
to make its second parameter optional. When you
pass a number to TRANSFORM(), you get back a
string that includes all the digits in the original. As
Listing 1 shows, TRANSFORM() works with the
various numeric types.

From Type to Type
Tamar E. Granor, Ph.D.

January 2009	 FoxRockX� Page 11

Listing 3. TTOC() offers four different results, depending on the
second parameter.
tDateTime = DATETIME(2008, 11, 20, 3, 17, 49)
SET DATE AMERICAN
?TTOC(m.tDateTime)
 && displays 11/20/2008 03:17:49 AM
?TTOC(m.tDateTime,1)
 && displays 20081120031749
?TTOC(m.tDateTime,2)
 && displays 03:17:49 AM
?TTOC(m.tDateTime,3)
 && displays 2008-11-20T03:17:49

The right choice for converting dates or date-
times depends on what you want to do with the
result. For display purposes, dependence on SET
DATE and SET CENTURY is probably what you
want. However, for use in compound indexes, the
setting-independent format is more appropriate.

Finally, TRANSFORM() works for dates and
datetimes. It gives the same results as DTOC() and
TTOC() without the second parameter, as indicated
by Listing 4.

Listing 4. TRANSFORM() works on dates and datetimes.
* Assume SET DATE AMERICAN and
* SET CENTURY ON
? TRANSFORM(m.dDate) && displays 11/20/2008
? TRANSFORM(m.tDateTime)
 && displays 11/20/2008 03:17:49 AM

For more control over the result, you can pass
the optional second parameter to TRANSFORM().
For dates, there are several options. Pass “@D” to
get the current SET DATE format or “@E” to use
the British date format. In more recent versions,
passing “@YS” or “@YL” formats the date in the
current short or long date format, as specified in the
Windows Control Panel.

TRANSFORM() almost anything
In addition to handling the various numeric types,
date, and datetime, TRANSFORM() works for logi-
cal values as well, and doesn’t even choke on char-
acter data. This makes it a one-stop shop for con-
verting to character.

Padding to desired length
While TRANSFORM() provides a handy general-
purpose conversion-to-character function, there is
a case where another group of functions is easier
to work with. When you need to convert to a char-
acter string of a specified length, especially if you
want to pad on one side or the other with some-
thing other than spaces, use the PADx() functions:
PADL(), PADR() and PADC().

The PADx() functions have two really useful
features. First, like TRANSFORM(), they accept
data of almost any type and do an implicit conver-

sion to character. Second, they have an optional
third parameter that specifies the pad character. By
default, the result is padded with spaces. However,
these functions can pad with anything you want,
so you can use them, for example, to build strings
of digits with leading zeroes, or to create “trailers”
of dots as you’d find in a table of contents or index.
As the examples in Listing 5 show, PADL() pads
on the left, PADR() pads on the right, and PADC()
pads on both sides to put the data provided in the
middle of the result.

Listing 5. The PADx() functions not only convert the first pa-
rameter to character, but can pad with any character.
? PADL(324, 10, "0")
 && results in "0000000324"
? PADR("Chapter 1", 25, ".")
 && results in "Chapter 1................"
? PADC("Centered", 20, "/")
 && results in "//////Centered//////"

Converting to other types
Most of the conversions you need for types other
than characters involve either converting from
character to the other type, or converting between
similar types, such as from datetime to date.

As with converting to string, VFP has a whole
collection of functions to handle other type conver-
sions. Table 1 lists some of the functions that go
from one type to another.

Table 1. VFP has lots of type conversion functions that don’t
result in character data.

Original type New type Function
Character Date CTOD()
Character DateTime CTOT()
Character Numeric VAL()
Currency Numeric MTON()
Datetime Date TTOD()
Numeric Currency NTOM()

VFP 9 introduced the CAST() function, which
provides a single way to convert between any com-
patible data types. CAST() accepts a single param-
eter with a rather unusual format and returns a
value of a specified type. The syntax for CAST()’s
parameter is shown in Listing 6.

Listing 6. The CAST() function accepts a single parameter, but
its format is unusual.
uExpression AS cType [(nSize [, nDecimals])]

In other words, you specify an expression and
type, and optionally a size. The format for the type
and size is the same as in the CREATE TABLE or
CREATE CURSOR command. Listing 7 shows

Page 12	 FoxRockX� January 2009

some examples. CAST() can handle a wide range
of types, not just the obvious combinations. For ex-
ample, trying to convert a numeric value to a logi-
cal results in 0 being .F. and all other values being
.T.; that seems as good a choice as any. CAST() does
fail on some conversions such as converting a date
to logical or numeric.

Listing 7. With CAST(), you can do all your conversions with
a single function; you just have to know the type and size you
want.
? CAST("123.45" as N(6,2))
 && results in numeric value 123.45
? CAST("$123.45" as Y)
 && results in currency value 123.4500
? CAST("^2008-2-8" as D)
 && results in date value 20080208
? CAST("^2008-2-8 15:01" as T)
 && results in datetime value 20080208150100

CAST() is especially useful in SQL-SELECT
commands, where it lets you specify the type and
size for result columns, as well as create memo
fields on the fly.

TRANSFORM() or CAST()?
Both TRANSFORM() and CAST() can convert from
other types to character, so which one should you
use for that purpose? The answer depends on your
needs. When you want a string of a particular size,
use CAST(). When you need a string in a specific
format, use TRANSFORM(). TRANSFORM() is
also best when you don’t know how big the result
could be.

Creating dates and datetimes
One traditional use of CTOD() is creating dates on
the fly. It’s not unusual to see code like that in List-
ing 8 in older applications. This code, of course,
depends on the SET DATE setting. There are two
alternatives that don’t depend on that setting.

Listing 8. In FoxBase and FoxPro, it was common to use
CTOD() to build date constants.
dStart = CTOD("09/01/2008")

The first alternative is the curly brace (using “{“
and “}”) notation for date constants. Rather than
having to convert a string to a date, you can simply
write the date between curly braces. Beginning in
VFP 5, you can also use the strict date notation to
make date constants independent of the SET DATE
setting. Strict date notation begins with a caret (^)
and then includes the date in YMD format. Listing
9 shows strict date format; Listing 10 shows the
example of Listing 8 using a date constant in strict
date format.
Listing 9. Curly braces enclose date constants. Use strict date
format to avoid dependence on SET DATE.
{^ YYYY-MM-DD}

Listing 10. Use strict date format for date constants rather than
converting character values.
dStart = {^ 2008-09-01}

While the ability to write unambiguous date
constants is very helpful, in VFP 6, we were given
the ability to unambiguously specify any date. The
DATE() function accepts three optional numeric
parameters: the year, the month and the day. When
you pass those parameters, the function returns the
corresponding date.

Listing 11 shows the same example again, this
time using DATE().

Listing 11. You can pass year, month and day to DATE() to
construct a date value.
dStart = DATE(2008, 9, 1)

The two techniques work for datetimes, as
well. You can specify a datetime constant in strict
date format between curly braces, as in Listing 12.
In addition, starting in VFP 6, DATETIME() accepts
up to 6 parameters to specify the datetime value to
create.

Listing 12. Strict date notation and curly braces work for date-
time values as well as for dates.
tAppt = {^ 2008-09-01 15:37:29}

Listing 13. The DATETIME() function lets you create datetime
values by passing appropriate parameters.
tAppt = DATETIME(2008, 9, 1, 15, 37, 29)

On the whole, the DATE()/DATETIME() ap-
proach to creating date and datetime values is a
better choice in code, as it offers more flexibility.
The parameters can be variables, expressions or
fields, as well as constants, so it’s easy to create one
date, given another. For example, to take a birth
date, and get this year’s birthday for that person,
you can use code like:

Listing 14. The DATE() function makes it easy to turn one date
into another.
* Assume dBirth contains birth date
dBirthday = DATE(YEAR(DATE()), ;
 MONTH(dBirth), DAY(dBirth))

Choose the right one
As this article indicates, there are a lot of ways to
convert data from one type to another in VFP. Some
are as old as Xbase itself, while others are newer.

For any given conversion task, there are likely
to be several options. Find the one that’s easiest to
get right in the first place and easiest to maintain,
and then use that approach every time you need to
do that kind of conversion.

